Association of Short-Term Exposure to PM2.5 with Blood Lipids and the Modification Effects of Insulin Resistance: A Panel Study in Wuhan
Results of previous studies about the acute effects of fine particulate matter (PM2.5) on blood lipids were inconsistent. This study aimed to quantify the short-term effects of PM2.5 on blood lipids and estimate the modifying role of insulin resistance, reflected by the homeostasis model assessment...
Gespeichert in:
Veröffentlicht in: | Toxics (Basel) 2022-11, Vol.10 (11), p.663 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Results of previous studies about the acute effects of fine particulate matter (PM2.5) on blood lipids were inconsistent. This study aimed to quantify the short-term effects of PM2.5 on blood lipids and estimate the modifying role of insulin resistance, reflected by the homeostasis model assessment of insulin resistance (HOMA-IR). From September 2019 to January 2020, the study recruited 70 healthy adults from Wuhan University for a total of eight repeated data collections. At each visit, three consecutive days were monitored for personal exposure to PM2.5, and then a physical examination was carried out on the fourth day. The linear mixed-effect models were operated to investigate the impact of PM2.5 over diverse exposure windows on blood lipids. With the median of the HOMA-IR 1.820 as the cut-off point, participants were assigned to two groups for the interaction analyses. We found the overall mean level (standard deviation, SD) of PM2.5 was 38.34 (18.33) μg/m3. Additionally, with a 10 μg/m3 rise in PM2.5, the corresponding largest responses in triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), as well as high-density lipoprotein cholesterol (HDL-C), were −0.91% (95% confidence interval (CI): −1.63%, −0.18%), −0.33% (95% CI: −0.64%, −0.01%,), −0.94% (95% CI: −1.53%, −0.35%), and 0.67% (95% CI: 0.32%, 1.02%), respectively. The interaction analyses revealed that a significantly greater reduction in the four lipids corresponded to PM2.5 exposure when in the group with the lower HOMA-IR ( |
---|---|
ISSN: | 2305-6304 2305-6304 |
DOI: | 10.3390/toxics10110663 |