Reconfigurable optoelectronic transistors for multimodal recognition

Biological nervous system outperforms in both dynamic and static information perception due to their capability to integrate the sensing, memory and processing functions. Reconfigurable neuromorphic transistors, which can be used to emulate different types of biological analogues in a single device,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-04, Vol.15 (1), p.3257-3257, Article 3257
Hauptverfasser: Li, Pengzhan, Zhang, Mingzhen, Zhou, Qingli, Zhang, Qinghua, Xie, Donggang, Li, Ge, Liu, Zhuohui, Wang, Zheng, Guo, Erjia, He, Meng, Wang, Can, Gu, Lin, Yang, Guozhen, Jin, Kuijuan, Ge, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biological nervous system outperforms in both dynamic and static information perception due to their capability to integrate the sensing, memory and processing functions. Reconfigurable neuromorphic transistors, which can be used to emulate different types of biological analogues in a single device, are important for creating compact and efficient neuromorphic computing networks, but their design remains challenging due to the need for opposing physical mechanisms to achieve different functions. Here we report a neuromorphic electrolyte-gated transistor that can be reconfigured to perform physical reservoir and synaptic functions. The device exhibits dynamics with tunable time-scales under optical and electrical stimuli. The nonlinear volatile property is suitable for reservoir computing, which can be used for multimodal pre-processing. The nonvolatility and programmability of the device through ion insertion/extraction achieved via electrolyte gating, which are required to realize synaptic functions, are verified. The device’s superior performance in mimicking human perception of dynamic and static multisensory information based on the reconfigurable neuromorphic functions is also demonstrated. The present study provides an exciting paradigm for the realization of multimodal reconfigurable devices and opens an avenue for mimicking biological multisensory fusion. Reconfigurable neuromorphic transistors are important for creating compact and efficient neuromorphic computing networks. Here, Li et al. introduce an optoelectronic electrolyte-gated transistor to perform multimodal recognition.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-47580-2