Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing
Mechanosensation electronics (or Electronic skin, e-skin) consists of mechanically flexible and stretchable sensor networks that can detect and quantify various stimuli to mimic the human somatosensory system, with the sensations of touch, heat/cold, and pain in skin through various sensory receptor...
Gespeichert in:
Veröffentlicht in: | Nature communications 2018-01, Vol.9 (1), p.244-11, Article 244 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mechanosensation electronics (or Electronic skin, e-skin) consists of mechanically flexible and stretchable sensor networks that can detect and quantify various stimuli to mimic the human somatosensory system, with the sensations of touch, heat/cold, and pain in skin through various sensory receptors and neural pathways. Here we present a skin-inspired highly stretchable and conformable matrix network (SCMN) that successfully expands the e-skin sensing functionality including but not limited to temperature, in-plane strain, humidity, light, magnetic field, pressure, and proximity. The actualized specific expandable sensor units integrated on a structured polyimide network, potentially in three-dimensional (3D) integration scheme, can also fulfill simultaneous multi-stimulus sensing and achieve an adjustable sensing range and large-area expandability. We further construct a personalized intelligent prosthesis and demonstrate its use in real-time spatial pressure mapping and temperature estimation. Looking forward, this SCMN has broader applications in humanoid robotics, new prosthetics, human–machine interfaces, and health-monitoring technologies.
Electronic skins have been developed to emulate human sensory systems, but simultaneous detection of multiple stimuli remains a big challenge due to coupling of electronic signals. Here, Hua et al. overcome this problem in a stretchable and conformable matrix network integrated with seven different modes. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-017-02685-9 |