Bias correction capabilities of quantile mapping methods for rainfall and temperature variables

This study aims to conduct a thorough investigation to compare the abilities of quantile mapping (QM) techniques as a bias correction method for the raw outputs from general circulation model (GCM)/regional climate model (RCM) combinations. The Karkheh River basin in Iran was selected as a case stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of water and climate change 2021-03, Vol.12 (2), p.401-419
Hauptverfasser: Enayati, Maedeh, Bozorg-Haddad, Omid, Bazrafshan, Javad, Hejabi, Somayeh, Chu, Xuefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to conduct a thorough investigation to compare the abilities of quantile mapping (QM) techniques as a bias correction method for the raw outputs from general circulation model (GCM)/regional climate model (RCM) combinations. The Karkheh River basin in Iran was selected as a case study, due to its diverse topographic features, to test the performances of the bias correction methods under different conditions. The outputs of two GCM/RCM combinations (ICHEC and NOAA-ESM) were acquired from the coordinated regional climate downscaling experiment (CORDEX) dataset for this study. The results indicated that the performances of the QMs varied, depending on the transformation functions, parameter sets, and topographic conditions. In some cases, the QMs' adjustments even made the GCM/RCM combinations' raw outputs worse. The result of this study suggested that apart from DIST, PTF:scale, and SSPLIN, the rest of the considered QM methods can provide relatively improved results for both rainfall and temperature variables. It should be noted that, according to the results obtained from the diverse topographic conditions of the sub-basins, the empirical quantiles (QUANT) and robust empirical quantiles (RQUANT) methods proved to be excellent options to correct the bias of rainfall data, while all bias correction methods, with the notable exceptions of performed PTF:scale and SSPLIN, performed relatively well for the temperature variable.
ISSN:2040-2244
2408-9354
DOI:10.2166/wcc.2020.261