Lower order for meromorphic solutions to linear delay-differential equations

In this article, we study the order of growth for solutions of the non-homogeneous linear delay-differential equation $$ \sum_{i=0}^n\sum_{j=0}^{m}A_{ij}f^{(j)} (z+c_i)=F(z), $$ where \(A_{ij}(z)\) \((i=0,\dots ,n;j=0,\dots ,m)\), \(F(z)$\)are entire or meromorphic functions and \(c_i\) \((0,1,\dots...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic journal of differential equations 2021-11, Vol.2021 (1-104), p.1-20
Hauptverfasser: Bellaama, Rachid, Belaidi, Benharrat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we study the order of growth for solutions of the non-homogeneous linear delay-differential equation $$ \sum_{i=0}^n\sum_{j=0}^{m}A_{ij}f^{(j)} (z+c_i)=F(z), $$ where \(A_{ij}(z)\) \((i=0,\dots ,n;j=0,\dots ,m)\), \(F(z)$\)are entire or meromorphic functions and \(c_i\) \((0,1,\dots ,n)\) are non-zero distinct complex numbers. Under the condition that there exists one coefficient having the maximal lower order, or having the maximal lower type, strictly greater than the order, or the type, of the other coefficients, we obtain estimates of the lower bound of the order of meromorphic solutions of the above equation. For more information see https://ejde.math.txstate.edu/Volumes/2021/92/abstr.html
ISSN:1072-6691
1072-6691
DOI:10.58997/ejde.2021.92