Pythagorean Isoparametric Hypersurfaces in Riemannian and Lorentzian Space Forms
We introduce the notion of a Pythagorean hypersurface immersed into an n+1-dimensional pseudo-Riemannian space form of constant sectional curvature c∈−1,0,1. By using this definition, we prove in Riemannian setting that if an isoparametric hypersurface is Pythagorean, then it is totally umbilical wi...
Gespeichert in:
Veröffentlicht in: | Axioms 2022-02, Vol.11 (2), p.59 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the notion of a Pythagorean hypersurface immersed into an n+1-dimensional pseudo-Riemannian space form of constant sectional curvature c∈−1,0,1. By using this definition, we prove in Riemannian setting that if an isoparametric hypersurface is Pythagorean, then it is totally umbilical with sectional curvature φ+c, where φ is the Golden Ratio. We also extend this result to Lorentzian ambient space, observing the existence of a non totally umbilical model. |
---|---|
ISSN: | 2075-1680 2075-1680 |
DOI: | 10.3390/axioms11020059 |