Efficient ab initio many-body calculations based on sparse modeling of Matsubara Green's function

This lecture note reviews recently proposed sparse-modeling approaches for efficient ab initio many-body calculations based on the data compression of Green's functions. The sparse-modeling techniques are based on a compact orthogonal basis, an intermediate representation (IR) basis, for imagin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SciPost physics lecture notes 2022-09, p.63, Article 63
Hauptverfasser: Shinaoka, Hiroshi, Chikano, Naoya, Gull, Emanuel, Li, Jia, Nomoto, Takuya, Otsuki, Junya, Wallerberger, Markus, Wang, Tianchun, Yoshimi, Kazuyoshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This lecture note reviews recently proposed sparse-modeling approaches for efficient ab initio many-body calculations based on the data compression of Green's functions. The sparse-modeling techniques are based on a compact orthogonal basis, an intermediate representation (IR) basis, for imaginary-time and Matsubara Green's functions. A sparse sampling method based on the IR basis enables solving diagrammatic equations efficiently. We describe the basic properties of the IR basis, the sparse sampling method and its applications to ab initio calculations based on the GW approximation and the Migdal--Eliashberg theory. We also describe a numerical library for the IR basis and the sparse sampling method, sparse-ir, and provide its sample codes. This lecture note follows the Japanese review article [H. Shinaoka et al., Solid State Physics 56(6), 301 (2021)].
ISSN:2590-1990
2590-1990
DOI:10.21468/SciPostPhysLectNotes.63