Processing and Characterization of PET Composites Reinforced With Geopolymer Concrete Waste
In the present study, poly (ethylene terephthalate)-based composites were produced and characterized. These composites were composed by poly (ethylene terephthalate) (PET) reinforced with geopolymer concrete waste (GCW). Both untreated (U-GCW) and treated with oleic acid (OA) geopolymer concrete was...
Gespeichert in:
Veröffentlicht in: | Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2017-01, Vol.20 (suppl 2), p.411-420 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present study, poly (ethylene terephthalate)-based composites were produced and characterized. These composites were composed by poly (ethylene terephthalate) (PET) reinforced with geopolymer concrete waste (GCW). Both untreated (U-GCW) and treated with oleic acid (OA) geopolymer concrete waste (T-GCW) were used in the production of the composites. The PET/GCW ratios used for either treated or untreated GCW bodies were 80/20 (wt%), 60/40 (wt%) and 50/50 (wt%). Chemical compositions were assessed by X-ray fluorescence spectroscopy (XRF), crystallinity by differential scanning calorimetry (DSC), thermal stability by thermogravimetry (TGA), microstructure by field emission gun scanning electron microscopy (FEG-SEM) with energy dispersive X-ray spectroscopy (EDS), and mechanical properties were assessed by compression tests. Fourier transform infrared spectroscopy (FT-IR) was used to check the efficiency of the treatment with OA, as well as the interaction between PET and GCW. The T-GCW PET composites showed better thermal, physical, and mechanical properties, for non-structural applications, when compared to U-GCW. |
---|---|
ISSN: | 1516-1439 1980-5373 1980-5373 |
DOI: | 10.1590/1980-5373-mr-2017-0734 |