Development-Related miRNA Expression and Target Regulation during Staggered In Vitro Plant Regeneration of Tuxpeño VS-535 Maize Cultivar
In vitro plant regeneration addresses basic questions of molecular reprogramming in the absence of embryonic positional cues. The process is highly dependent on the genotype and explant characteristics. However, the regulatory mechanisms operating during organ differentiation from in vitro cultures...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2019-04, Vol.20 (9), p.2079 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In vitro plant regeneration addresses basic questions of molecular reprogramming in the absence of embryonic positional cues. The process is highly dependent on the genotype and explant characteristics. However, the regulatory mechanisms operating during organ differentiation from in vitro cultures remain largely unknown. Recently, miRNAs have emerged as key regulators during embryogenic callus induction, plant differentiation, auxin responses and totipotency. Here, we explored how development-related miRNA switches the impact on their target regulation depending on physiological and molecular events taking place during maize Tuxpeño VS-535 in vitro plant regeneration. Three callus types with distinctive regeneration potential were characterized by microscopy and histological preparations. The embryogenic calli (EC) showed higher miRNA levels than non-embryogenic tissues (NEC). An inverse correlation for miR160 and miR166 targets was found during EC callus induction, whereas miR156, miR164 and miR394 displayed similar to their targets RNA accumulation levels. Most miRNA accumulation switches took place early at regenerative spots coincident with shoot apical meristem (SAM) establishment, whereas miR156, miR160 and miR166 increased at further differentiation stages. Our data uncover particular miRNA-mediated regulation operating for maize embryogenic tissues, supporting their regulatory role in early SAM establishment and basipetala growth during the in vitro regeneration process. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms20092079 |