Long-term trends and probability distribution functions of air pollutant concentrations in the megacity of São Paulo
Air quality conditions in many urban areas have improved in the last decades as a consequence of air pollution control policies and regulations. Mitigation strategies have been successful in reducing the concentration of primary pollutants like inhalable particulate matter (PM10), but the control of...
Gespeichert in:
Veröffentlicht in: | Derbyana 2024-08, Vol.45 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Air quality conditions in many urban areas have improved in the last decades as a consequence of air pollution control policies and regulations. Mitigation strategies have been successful in reducing the concentration of primary pollutants like inhalable particulate matter (PM10), but the control of secondary pollutants like tropospheric ozone (O3) is still challenging in megacities like the Metropolitan Area of São Paulo (MASP) in Brazil. To support the development of effective mitigation strategies, it is crucial to characterize the statistical behavior of air pollutant concentrations and its long-term evolution. Probability Density Functions (PDF) can be useful to model site-specific air quality conditions, providing estimates for the frequency of extreme pollution events and exceedance of air quality standards. The current study aims to characterize which PDF model better fits and characterizes the variability of PM10 and O3 concentrations in the MASP. For that, daily maximum moving average concentrations were analyzed between 2000 and 2023, characterizing the long-term trends and the frequency of exceedance of air quality standards. PM10 concentrations followed a lognormal PDF, with an expected value of 31 ± 15 µg.m-3. O3 followed a Gamma PDF, with an expected value of 68 ± 25 µg.m-3. A consistent long-term decrease was observed for PM10 (-1.04 ± 0.09 µg.m-3.yr-1), while O3 showed an increasing trend of 0.51 ± 0.04 µg.m-3.yr-1 in the summer. In recent years (2021-2023), the probability of exceedance of the World Health Organization guideline was 17.4 and 11.0%, respectively, for PM10 and O3. In 2020, a statistically significant increase in O3 expected values was observed, possibly associated with changes in the emission patterns of precursors due to the mobility restrictions imposed by the COVID-19 pandemic.
Las condiciones de calidad del aire en muchas zonas urbanas han mejorado en las últimas décadas como consecuencia de las políticas y normativas de control de la contaminación atmosférica. Las estrategias de mitigación han logrado reducir la concentración de contaminantes primarios como las partículas inhalables (PM10), pero el control de contaminantes secundarios como el ozono troposférico (O3) sigue siendo un reto en megaciudades como el Área Metropolitana de São Paulo (AMSP) en Brasil. Para apoyar el desarrollo de estrategias de mitigación eficaces, es crucial caracterizar el comportamiento estadístico de las concentraciones de contaminantes atm |
---|---|
ISSN: | 2764-1465 2764-1465 |
DOI: | 10.69469/derb.v45.816 |