Quantifying Biophoton Emissions From Human Cells Directly Exposed to Low-Dose Gamma Radiation

Biophoton emission leading to bystander effects (BEs) was shown in beta-irradiated cells; however, technical challenges precluded the analysis of the biophoton role in gamma-induced BEs. The present work was to design an experimental approach to determine if, what type, and how many biophotons could...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dose-response 2020-04, Vol.18 (2), p.155932582092676-1559325820926763
Hauptverfasser: Cohen, Jason, Vo, Nguyen T. K., Chettle, David R., McNeill, Fiona E., Seymour, Colin B., Mothersill, Carmel E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biophoton emission leading to bystander effects (BEs) was shown in beta-irradiated cells; however, technical challenges precluded the analysis of the biophoton role in gamma-induced BEs. The present work was to design an experimental approach to determine if, what type, and how many biophotons could be produced in gamma-irradiated cells. Photon emission was measured in HCT116 p53+/+ cells irradiated with a total dose of 22 mGy from a cesium-137 source at a dose rate of 45 mGy/min. A single-photon detection unit was used and shielded with lead to reduce counts from stray gammas reaching the detector. Higher quantities of photon emissions were observed when the cells in a tissue culture vessel were present and being irradiated compared to a cell-free vessel. Photon emissions were captured at either 340 nm (in the ultraviolet A [UVA] range) or 610 nm. At the same cell density, radiation exposure time, and radiation dose, HCT116 p53+/+ cells emitted 2.5 times more UVA biophotons than 610-nm biophotons. For the first time, gamma radiation was shown to induce biophoton emissions from biological cells. As cellular emissions of UVA biophotons following beta radiation lead to BEs, the involvement of cellular emissions of the same type of UVA biophotons in gamma radiation-induced BEs is highly likely.
ISSN:1559-3258
1559-3258
DOI:10.1177/1559325820926763