scAnnotatR: framework to accurately classify cell types in single-cell RNA-sequencing data
Automatic cell type identification is essential to alleviate a key bottleneck in scRNA-seq data analysis. While most existing classification tools show good sensitivity and specificity, they often fail to adequately not-classify cells that are missing in the used reference. Additionally, many tools...
Gespeichert in:
Veröffentlicht in: | BMC bioinformatics 2022-01, Vol.23 (1), p.44-13, Article 44 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Automatic cell type identification is essential to alleviate a key bottleneck in scRNA-seq data analysis. While most existing classification tools show good sensitivity and specificity, they often fail to adequately not-classify cells that are missing in the used reference. Additionally, many tools do not scale to the continuously increasing size of current scRNA-seq datasets. Therefore, additional tools are needed to solve these challenges.
scAnnotatR is a novel R package that provides a complete framework to classify cells in scRNA-seq datasets using pre-trained classifiers. It supports both Seurat and Bioconductor's SingleCellExperiment and is thereby compatible with the vast majority of R-based analysis workflows. scAnnotatR uses hierarchically organised SVMs to distinguish a specific cell type versus all others. It shows comparable or even superior accuracy, sensitivity and specificity compared to existing tools while being able to not-classify unknown cell types. Moreover, scAnnotatR is the only of the best performing tools able to process datasets containing more than 600,000 cells.
scAnnotatR is freely available on GitHub ( https://github.com/grisslab/scAnnotatR ) and through Bioconductor (from version 3.14). It is consistently among the best performing tools in terms of classification accuracy while scaling to the largest datasets. |
---|---|
ISSN: | 1471-2105 1471-2105 |
DOI: | 10.1186/s12859-022-04574-5 |