Combinatorics of Bricard’s octahedra

We re-prove the classification of motions of an octahedron — obtained by Bricard at the beginning of the XX century — by means of combinatorial objects satisfying some elementary rules. The explanations of these rules rely on the use of a well-known creation of modern algebraic geometry, the moduli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comptes rendus. Mathématique 2021-03, Vol.359 (1), p.7-38
Hauptverfasser: Gallet, Matteo, Grasegger, Georg, Legerský, Jan, Schicho, Josef
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We re-prove the classification of motions of an octahedron — obtained by Bricard at the beginning of the XX century — by means of combinatorial objects satisfying some elementary rules. The explanations of these rules rely on the use of a well-known creation of modern algebraic geometry, the moduli space of stable rational curves with marked points, for the description of configurations of graphs on the sphere. Once one accepts the objects and the rules, the classification becomes elementary (though not trivial) and can be enjoyed without the need of a very deep background on the topic.
ISSN:1778-3569
1778-3569
DOI:10.5802/crmath.132