Design of a Suspension Controller with an Adaptive Feedforward Algorithm for Ride Comfort Enhancement and Motion Sickness Mitigation

This paper presents a design method of a suspension controller with an adaptive feedforward algorithm for ride comfort enhancement and motion sickness mitigation. Recently, it was shown that motion sickness is caused by combined heave and pitch motions of a sprung mass within the range of 0.8 and 8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Actuators 2024-08, Vol.13 (8), p.315
Hauptverfasser: Kim, Jinwoo, Yim, Seongjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a design method of a suspension controller with an adaptive feedforward algorithm for ride comfort enhancement and motion sickness mitigation. Recently, it was shown that motion sickness is caused by combined heave and pitch motions of a sprung mass within the range of 0.8 and 8 Hz. For this reason, it is necessary to design a suspension controller for the purpose of reducing the heave and pitch vibration of a sprung mass within this range. To represent the heave acceleration and the pitch rate of a sprung mass, a 4-DOF half-car model is adopted as a vehicle model. For easy implementation in a real vehicle, a static output feedback control is adopted instead of a full-state one. To reduce the heave acceleration of a sprung mass for ride comfort enhancement, a linear quadratic SOF controller is designed. To reduce the pitch rate of a sprung mass for motion sickness mitigation, a filtered-X LMS algorithm is applied. To validate the method, simulation on vehicle simulation software is conducted. From the simulation results, it is shown that the proposed method is effective for ride comfort enhancement and motion sickness mitigation.
ISSN:2076-0825
2076-0825
DOI:10.3390/act13080315