Chiral gold nanoparticles enantioselectively rescue memory deficits in a mouse model of Alzheimer’s disease

Preventing aggregation of amyloid beta (Aβ) peptides is a promising strategy for the treatment of Alzheimer’s disease (AD), and gold nanoparticles have previously been explored as a potential anti-Aβ therapeutics. Here we design and prepare 3.3 nm L- and D-glutathione stabilized gold nanoparticles (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-09, Vol.11 (1), p.1-11, Article 4790
Hauptverfasser: Hou, Ke, Zhao, Jing, Wang, Hui, Li, Bin, Li, Kexin, Shi, Xinghua, Wan, Kaiwei, Ai, Jing, Lv, Jiawei, Wang, Dawei, Huang, Qunxing, Wang, Huayi, Cao, Qin, Liu, Shaoqin, Tang, Zhiyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Preventing aggregation of amyloid beta (Aβ) peptides is a promising strategy for the treatment of Alzheimer’s disease (AD), and gold nanoparticles have previously been explored as a potential anti-Aβ therapeutics. Here we design and prepare 3.3 nm L- and D-glutathione stabilized gold nanoparticles (denoted as L3.3 and D3.3, respectively). Both chiral nanoparticles are able to inhibit aggregation of Aβ42 and cross the blood-brain barrier (BBB) following intravenous administration without noticeable toxicity. D3.3 possesses a larger binding affinity to Aβ42 and higher brain biodistribution compared with its enantiomer L3.3, giving rise to stronger inhibition of Aβ42 fibrillation and better rescue of behavioral impairments in AD model mice. This conjugation of a small nanoparticle with chiral recognition moiety provides a potential therapeutic approach for AD. Nanoparticles are being explored as a potential method to target Aβ aggregation in Alzheimer’s disease. Here, the authors develop gold nanoparticles that were capped with chiral L or D-glutathione which has been shown to improve BBB permeability and demonstrate their ability to improve cognitive function in a mouse model of AD.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-18525-2