Optimization of Brake Calipers Using Topology Optimization for Additive Manufacturing

The weight optimization of a structure can be conducted by using fewer and downsized components, applying lighter materials in production, and removing unwanted material. Topology optimization (TO) is one of the most implemented material removal processes. In addition, when it is oriented towards ad...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-02, Vol.11 (4), p.1437
Hauptverfasser: Tyflopoulos, Evangelos, Lien, Mathias, Steinert, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The weight optimization of a structure can be conducted by using fewer and downsized components, applying lighter materials in production, and removing unwanted material. Topology optimization (TO) is one of the most implemented material removal processes. In addition, when it is oriented towards additive manufacturing (AM), it increases design flexibility. The traditional optimization approach is the compliance optimization, where the material layout of a structure is optimized by minimizing its overall compliance. However, TO, in its current state of the art, is mainly used for design inspiration and not for manufacturing due to design complexities and lack of accuracy of its design solutions. The authors, in this research paper, explore the benefits and the limitations of the TO using as a case study the housings of a front and a rear brake caliper. The calipers were optimized for weight reduction by implementing the aforementioned optimization procedure. Their housings were topologically optimized, partially redesigned, prepared for 3D printing, validated, and 3D printed in titanium using selective laser melting (SLM). The weight of the optimized calipers reduced by 41.6% compared to commercial calipers. Designers interested in either TO or in automotive engineering can exploit the findings in this paper.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11041437