Nitrogen and Phosphorus of Plants Associated with Arbuscular and Ectomycorrhizas Are Differentially Influenced by Drought
Leaf nitrogen (N) and phosphorus (P) are the most important functional traits in plants which affect biogeochemical cycles. As the most widely observed plant−fungus mutualistic symbiosis, mycorrhiza plays a vital role in regulating plant growth. There are different types of mycorrhiza with various e...
Gespeichert in:
Veröffentlicht in: | Plants (Basel) 2022-09, Vol.11 (18), p.2429 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Leaf nitrogen (N) and phosphorus (P) are the most important functional traits in plants which affect biogeochemical cycles. As the most widely observed plant−fungus mutualistic symbiosis, mycorrhiza plays a vital role in regulating plant growth. There are different types of mycorrhiza with various ecological functions in nature. Drought, as a frequent environmental stress, has been paid more and more attention due to its influence on plant growth. Numerous studies have confirmed that drought affects the concentration of N and P in plants, but few studies involve different mycorrhizal types of plants. In this study, the differences of N and P between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) plants under different drought patterns, drought duration and cultivation conditions were explored based on a dataset by a meta-analysis. Drought stress (DS) showed negative effects on AM plant N (−7.15%) and AM plant P (−13.87%), and a positive effect on AM plant N:P ratio (+8.01%). Drought significantly increased N and the N:P ratio of ECM plants by 1.58% and 3.58%, respectively, and decreased P of ECM plants by −2.00%. Short-term drought ( |
---|---|
ISSN: | 2223-7747 2223-7747 |
DOI: | 10.3390/plants11182429 |