Comprehensive pan-cancer analysis of FUTs family as prognostic and immunity markers based on multi-omics data

Background The dysregulation of fucosyltransferases (FUTs) contributes to alterations in fucosylated epitope expression, which serve as distinctive features of cancer cells. Nonetheless, a comprehensive elucidation of the prognostic biological marker and therapeutic target of the FUTs family in pan-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discover. Oncology 2024-10, Vol.15 (1), p.567-18, Article 567
Hauptverfasser: Jia, Zexi, Liao, Pan, Yan, Bo, Lei, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background The dysregulation of fucosyltransferases (FUTs) contributes to alterations in fucosylated epitope expression, which serve as distinctive features of cancer cells. Nonetheless, a comprehensive elucidation of the prognostic biological marker and therapeutic target of the FUTs family in pan-cancer remains elusive. Methods Over 10,000 individuals' profiling information was examined, including information on 750 small molecule drugs, 33 types of cancer, and 24 types of immune cells. We focused on POFUT2's function and applied GSVA (Gene Set Variation Analysis) to calculate the FUT score. Survival and cancer pathways were found to be correlated with this score. After deriving a signature via univariate Cox and LASSO regression, we generated and analyzed the ROC curve and developed a nomogram. Results Our comprehensive analysis revealed epigenetic, genomic, and immunogenomic changes in FUTs, particularly POFUT2, resulting in aberrant expression. Elevated frequencies of CNV (Copy number variation), SNV (Single Nucleotide Variant), and hypermethylation were observed in FUTs. Additionally, the survival of patients with various types of cancers may be predicted by FUT expression. Immune response and prognosis in numerous types of cancer were found to be strongly linked to aberrant POFUT2 expression. Pathway analysis unveiled the role of FUTs in apoptosis, epithelial-to-mesenchymal transition (EMT), cell cycle, DNA damage response, RAS/MAPK, TSC/mTOR, PI3K/AKT, AR, ER, and RTK. A prognostic index for patients diagnosed with adrenocortical carcinoma (ACC) was established by applying a risk model incorporating nine FUTs and based on the findings of the GSVA. Conclusions FUTs, particularly POFUT2, emerge as candidate targets for improving the outcomes of immune therapy. The significance of aberrant MUC12 expression, cancer immune therapy, and patient survival in the context of diverse malignancies is enhanced by the strong correlation observed among these factors. Our five-gene risk signature provides patients with ACC with an independent prognostic indicator, emphasizing the critical function of these genes in inhibiting the immune system's response in ACC.
ISSN:2730-6011
2730-6011
DOI:10.1007/s12672-024-01447-6