Al-1.5Fe-xLa Alloys for Lithium-Ion Battery Package

Al foil with high formability and corrosion resistance is highly desired for lithium-ion battery soft packaging. Annealing treatment has a significant impact on the performance of soft packaging Al foil. The effects of both La content and the annealing temperature on the microstructure, mechanical p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2018-11, Vol.8 (11), p.890
Hauptverfasser: Zhang, Rong, Ding, Dongyan, Zhang, Wenlong, Gao, Yongjin, Wu, Zhanlin, Chen, Guozhen, Chen, Renzong, Huang, Yuanwei, Tang, Jinsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Al foil with high formability and corrosion resistance is highly desired for lithium-ion battery soft packaging. Annealing treatment has a significant impact on the performance of soft packaging Al foil. The effects of both La content and the annealing temperature on the microstructure, mechanical properties, and corrosion behavior of Al-1.5Fe-La alloy was investigated through optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), tensile testing, potentiodynamic polarization testing, and electrochemical impedance spectroscopy (EIS) testing. A higher addition of La resulted in the formation of AlFeLa particles and a refinement of the Fe-rich second phase. The Al-1.5Fe-0.25La alloy had a higher formability and corrosion resistance than the Al-1.5Fe-0.1La alloy. Microstructure analysis indicated that recovery, recrystallization, and grain growth successively occurred in the Al-Fe-La alloy with the increase of the annealing temperature from 200 °C to 250 and 380 °C. After annealing at 250 °C, the Al-Fe-La alloys had the highest corrosion resistance due to refined grain and a high fraction of small-angle grain boundaries.
ISSN:2075-4701
2075-4701
DOI:10.3390/met8110890