Semi Square Stable Graphs and Efficient Dominating Sets

A graph $G$ is called semi square stable if $\alpha (G^{2})=i(G)$ where $%\alpha (G^{2})$ is the independence number of $G^{2}$ and $i(G)$ is the independent dominating number of $G$. A subset $S$ of the vertex set of a graph $G$ is an efficient dominating set if $S$ is an independent set and every...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions on combinatorics 2023-06, Vol.12 (2), p.107-113
Hauptverfasser: Baha̓ Abughazaleh, Omar Abughneim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A graph $G$ is called semi square stable if $\alpha (G^{2})=i(G)$ where $%\alpha (G^{2})$ is the independence number of $G^{2}$ and $i(G)$ is the independent dominating number of $G$. A subset $S$ of the vertex set of a graph $G$ is an efficient dominating set if $S$ is an independent set and every vertex of $G$ is either in $S$ or adjacent to exactly one vertex of $%S. $In this paper, we show that every square stable graph has an efficient dominating set and if a graph has an efficient dominating set, then it is semi square stable. We characterize when the join and the corona product of two disjoint graphs are semi square sable graphs and when they have efficient dominating sets.
ISSN:2251-8657
2251-8665
DOI:10.22108/toc.2022.132784.1967