Edge homogeneous colorings

We explore four kinds of edge colorings defined by the requirement of equal number of colors appearing, in particular ways, around each vertex or each edge. We obtain the characterization of graphs colorable in such a way that the ends of each edge see (not regarding the edge color itself) \(q\) col...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica. Opuscula Mathematica 2022, Vol.42 (1), p.65-73
Hauptverfasser: Madaras, Tomáš, Onderko, Alfréd, Schweser, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We explore four kinds of edge colorings defined by the requirement of equal number of colors appearing, in particular ways, around each vertex or each edge. We obtain the characterization of graphs colorable in such a way that the ends of each edge see (not regarding the edge color itself) \(q\) colors (resp. one end sees \(q\) colors and the color sets for both ends are the same), and a sufficient condition for 2-coloring a graph in a way that the ends of each edge see (with the omission of that edge color) altogether \(q\) colors. The relations of these colorings to \(M_q\)-colorings and role colorings are also discussed; we prove an interpolation theorem for the numbers of colors in edge coloring where all edges around each vertex have \(q\) colors.
ISSN:1232-9274
DOI:10.7494/OpMath.2022.42.1.65