Repeatability of High-Pressure Measurement in a Diesel Engine Test Bed

This paper addresses the issue of metrological accuracy of instantaneous in-cylinder pressure measurement in a diesel engine test bed. In studies, the central unit has been the single-cylinder AVL 5402 engine. The pressure measurement was performed with a sensor designed for thermodynamic analysis,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2020-06, Vol.20 (12), p.3478
Hauptverfasser: Skrzek, Tomasz, Rucki, Mirosław, Górski, Krzysztof, Matijošius, Jonas, Barta, Dalibor, Caban, Jacek, Zarajczyk, Janusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper addresses the issue of metrological accuracy of instantaneous in-cylinder pressure measurement in a diesel engine test bed. In studies, the central unit has been the single-cylinder AVL 5402 engine. The pressure measurement was performed with a sensor designed for thermodynamic analysis, and the results were related to the crank angle, where two rotations corresponding to the four-stroke working cycle were denoted as angles between −360° and +360°. The novelty of this paper is the proposition of how to perform a type A uncertainty estimation of the in-cylinder pressure measurement and to assess its repeatability. It was demonstrated that repeatability of the measurement during the ignition process was difficult to estimate because of the phenomena that cannot ensure the repeatability conditions. To solve the problem, two methods were proposed. In one method, the pressure was measured in the subsequent cycles immediately after the ignition was turned off, and in another method, the engine was driven by a starter. The latter method provided maximal pressure values much lower than during usual tests. The obtained repeatability of measured pressure was %EV = 0.4%, which proved high capability of the evaluated measurement system.
ISSN:1424-8220
1424-8220
DOI:10.3390/s20123478