Linear ubiquitination regulates the KSHV replication and transcription activator protein to control infection

Like many other viruses, KSHV has two life cycle modes: the latent phase and the lytic phase. The RTA protein from KSHV is essential for lytic reactivation, but how this protein’s activity is regulated is not fully understood. Here, we report that linear ubiquitination regulates the activity of RTA...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2024-06, Vol.15 (1), p.5515-13, Article 5515
Hauptverfasser: Luan, Yi, Long, Wenying, Dai, Lisi, Tao, Panfeng, Deng, Zhifen, Xia, Zongping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Like many other viruses, KSHV has two life cycle modes: the latent phase and the lytic phase. The RTA protein from KSHV is essential for lytic reactivation, but how this protein’s activity is regulated is not fully understood. Here, we report that linear ubiquitination regulates the activity of RTA during KSHV lytic reactivation and de novo infection. Overexpressing OTULIN inhibits KSHV lytic reactivation, whereas knocking down OTULIN or overexpressing HOIP enhances it. Intriguingly, we found that RTA is linearly polyubiquitinated by HOIP at K516 and K518, and these modifications control the RTA’s nuclear localization. OTULIN removes linear polyubiquitin chains from cytoplasmic RTA, preventing its nuclear import. The RTA orthologs encoded by the EB and MHV68 viruses are also linearly polyubiquitinated and regulated by OTULIN. Our study establishes that linear polyubiquitination plays a critically regulatory role in herpesvirus infection, adding virus infection to the list of biological processes known to be controlled by linear polyubiquitination. The RTA protein of Kaposi’s sarcoma-associated herpesvirus is crucial for the virus’ infection cycle. Here, the authors describe how RTA’s activity is controlled by linear ubiquitination, which could lead to therapies.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-024-49887-6