Ethanol Extract of Maclura tricuspidata Fruit Protects SH-SY5Y Neuroblastoma Cells against H2O2-Induced Oxidative Damage via Inhibiting MAPK and NF-κB Signaling

Free radical generation and oxidative stress push forward an immense influence on the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Maclura tricuspidata fruit (MT) contains many biologically active substances, including compounds with antioxidant pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2021-07, Vol.22 (13), p.6946
Hauptverfasser: Tian, Weishun, Heo, Suyoung, Kim, Dae-Woon, Kim, In-Shik, Ahn, Dongchoon, Tae, Hyun-Jin, Kim, Myung-Kon, Park, Byung-Yong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Free radical generation and oxidative stress push forward an immense influence on the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. Maclura tricuspidata fruit (MT) contains many biologically active substances, including compounds with antioxidant properties. The current study aimed to investigate the neuroprotective effects of MT fruit on hydrogen peroxide (H2O2)-induced neurotoxicity in SH-SY5Y cells. SH-SY5Y cells were pretreated with MT, and cell damage was induced by H2O2. First, the chemical composition and free radical scavenging properties of MT were analyzed. MT attenuated oxidative stress-induced damage in cells based on the assessment of cell viability. The H2O2-induced toxicity caused by ROS production and lactate dehydrogenase (LDH) release was ameliorated by MT pretreatment. MT also promoted an increase in the expression of genes encoding the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT). MT pretreatment was associated with an increase in the expression of neuronal genes downregulated by H2O2. Mechanistically, MT dramatically suppressed H2O2-induced Bcl-2 downregulation, Bax upregulation, apoptotic factor caspase-3 activation, Mitogen-activated protein kinase (MAPK) (JNK, ERK, and p38), and Nuclear factor-κB (NF-κB) activation, thereby preventing H2O2-induced neurotoxicity. These results indicate that MT has protective effects against H2O2-induced oxidative damage in SH-SY5Y cells and can be used to prevent and protect against neurodegeneration.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms22136946