Integrated multi-omics analysis of the microbial profile characteristics associated with pulmonary arterial hypertension in congenital heart disease
Dysregulation of immune and inflammatory cells around blood vessels and metabolic dysfunction are key mechanisms in the development of pulmonary arterial hypertension (PAH). The homeostasis of the human microbiome plays a crucial role in regulating immune responses and the progression of diseases. F...
Gespeichert in:
Veröffentlicht in: | Microbiology spectrum 2024-10, Vol.12 (12), p.e0180824 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dysregulation of immune and inflammatory cells around blood vessels and metabolic dysfunction are key mechanisms in the development of pulmonary arterial hypertension (PAH). The homeostasis of the human microbiome plays a crucial role in regulating immune responses and the progression of diseases. For pulmonary arterial hypertension associated with congenital heart disease involving body-lung shunt (PAH-CHD), the potential impact of the microbiome on the "gut-lung axis" remains underexplored. This study recruited 15 healthy individuals and 15 patients with pulmonary arterial hypertension due to congenital heart disease from Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, and Kunming Children's Hospital. We performed differential analyses of metabolites and microbiota from both the gut and lower respiratory tract for these two groups. The goal was to investigate the "gut-lung axis" microbiome and metabolome profiles in children with PAH-CHD and to analyze the interrelationships between these profiles. Ultimately, we aim to propose the potential value of these profiles in aiding diagnosis. The results indicated that the gut and pulmonary microbiota of children with PAH-CHD are characterized by an increased abundance of beneficial symbionts, which are closely linked to changes in the metabolome. Metabolite functional enrichment analysis revealed energy metabolism reprogramming in the PAH-CHD group, with active metabolic pathways associated with bile acid secretion and carnitine homeostasis. Moreover, the differential expression of metabolites was correlated with right heart function and growth development.IMPORTANCEPrevious studies have primarily focused on the relationship between the gut microbiome and PAH. However, the impact of microbial homeostasis on the progression of PAH-CHD from the perspective of the gut-lung axis has not been adequately elucidated. Our study utilizes an integrated multi-omics approach to report on the differential characteristics of gut and lung microbiota between children with PAH-CHD and reference subjects. We found that microbiota influence the pathological changes and disease manifestations of PAH-CHD through their metabolic activity. Additionally, alterations in metabolites impact the microbial ecological structure. Our findings suggest that modulating the microbiome composition may have positive implications for maintaining and regulating the immune environment and pathological progression of PAH-CHD. |
---|---|
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/spectrum.01808-24 |