A Real-Time Green and Lightweight Model for Detection of Liquefied Petroleum Gas Cylinder Surface Defects Based on YOLOv5
Industry requires defect detection to ensure the quality and safety of products. In resource-constrained devices, real-time speed, accuracy, and computational efficiency are the most critical requirements for defect detection. This paper presents a novel approach for real-time detection of surface d...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2025-01, Vol.15 (1), p.458 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Industry requires defect detection to ensure the quality and safety of products. In resource-constrained devices, real-time speed, accuracy, and computational efficiency are the most critical requirements for defect detection. This paper presents a novel approach for real-time detection of surface defects on LPG cylinders, utilising an enhanced YOLOv5 architecture referred to as GLDD-YOLOv5. The architecture integrates ghost convolution and ECA blocks to improve feature extraction with less computational overhead in the network’s backbone. It also modifies the P3–P4 head structure to increase detection speed. These changes enable the model to focus more effectively on small and medium-sized defects. Based on comparative analysis with other YOLO models, the proposed method demonstrates superior performance. Compared to the base YOLOv5s model, the proposed method achieved a 4.6% increase in average accuracy, a 44% reduction in computational cost, a 45% decrease in parameter counts, and a 26% reduction in file size. In experimental evaluations on the RTX2080Ti, the model achieved an inference rate of 163.9 FPS with a total carbon footprint of 0.549 × 10−3 gCO2e. The proposed technique offers an efficient and robust defect detection model with an eco-friendly solution compatible with edge computing devices. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app15010458 |