Conditional mean embedding and optimal feature selection via positive definite kernels

Motivated by applications, we consider new operator-theoretic approaches to conditional mean embedding (CME). Our present results combine a spectral analysis-based optimization scheme with the use of kernels, stochastic processes, and constructive learning algorithms. For initially given non-linear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rocznik Akademii Górniczo-Hutniczej im. Stanisława Staszica. Opuscula Mathematica 2024-01, Vol.44 (1), p.79-103
Hauptverfasser: Jorgensen, Palle E.T., Song, Myung-Sin, Tian, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by applications, we consider new operator-theoretic approaches to conditional mean embedding (CME). Our present results combine a spectral analysis-based optimization scheme with the use of kernels, stochastic processes, and constructive learning algorithms. For initially given non-linear data, we consider optimization-based feature selections. This entails the use of convex sets of kernels in a construction o foptimal feature selection via regression algorithms from learning models. Thus, with initial inputs of training data (for a suitable learning algorithm), each choice of a kernel \(K\) in turn yields a variety of Hilbert spaces and realizations of features. A novel aspect of our work is the inclusion of a secondary optimization process over a specified convex set of positive definite kernels, resulting in the determination of "optimal" feature representations.
ISSN:1232-9274
DOI:10.7494/OpMath.2024.44.1.79