Near-Optimal Weather Routing by Using Improved A Algorithm
With soaring oil prices worldwide, determining the most optimal routes for economical ship operation has become an important issue. Optimizing ship routes is economically important for ship operation, but it is also essential to meet the standards of environmental regulations recently imposed by the...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2020-09, Vol.10 (17), p.6010, Article 6010 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With soaring oil prices worldwide, determining the most optimal routes for economical ship operation has become an important issue. Optimizing ship routes is economically important for ship operation, but it is also essential to meet the standards of environmental regulations recently imposed by the International Maritime Organization. For this purpose, various algorithms for determining ship routes have been developed to ensure the economical operation of ships via utilization of marine climate data and Automatic Identification System (AIS) data. However, such algorithms require a large amount of computational time and do not provide optimal routes because they do not consider practical operating conditions, such as weather and ocean conditions. In this study, an improved A* algorithm using AIS and weather data is proposed to overcome the limitation of the original A* algorithm, one of the most widely used path-finding algorithms. The improved A* algorithm uses an adaptive grid system that efficiently explores nodes according to map grid deformation by latitude. It finds economical routes by minimizing the estimated time of arrival generated by machine learning through 16-way node exploration. For verification of the proposed method, the original A* algorithm and improved A* algorithm were compared through a case study. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app10176010 |