Transcriptomic Analysis on the Effects of Altered Water Temperature Regime on the Fish Ovarian Development of Coreius guichenoti under the Impact of River Damming

Field investigation indicated that the reduction in fish spawning was associated with the alteration in water temperatures, even a 2-3 °C monthly difference due to reservoir operations. However, the physiological mechanism that influences the development of fish ovary (DFO) remains unclear. Thus, ex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology (Basel, Switzerland) Switzerland), 2022-12, Vol.11 (12), p.1829
Hauptverfasser: Li, Ting, Chen, Qiuwen, Zhang, Qi, Feng, Tao, Zhang, Jianyun, Lin, Yuqing, Yang, Peisi, He, Shufeng, Zhang, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Field investigation indicated that the reduction in fish spawning was associated with the alteration in water temperatures, even a 2-3 °C monthly difference due to reservoir operations. However, the physiological mechanism that influences the development of fish ovary (DFO) remains unclear. Thus, experiments of were conducted at three different temperatures, optimal temperature (~20 °C, N) for fish spawning, lower (~17 °C, L), and higher (~23 °C, H), to reveal the effects of altered water temperature on the DFO. Comparisons were made between the L and N (LvsN) conditions and H and N (HvsN) conditions. Transcriptomic analysis differentially expressed transcripts (DETs) related to heat stress were observed only in LvsN conditions, indicating that the DFO showed a stronger response to changes in LvsN than in HvsN conditions. Upregulation of DETs of vitellogenin receptors in N temperature showed that normal temperature was conducive to vitellogenin entry into the oocytes. Other temperature-sensitive DETs, including microtubule, kinesin, dynein, and actin, were closely associated with cell division and material transport. LvsN significantly impacted cell division and nutrient accumulation in the yolk, whereas HvsN only influenced cell division. Our results highlight the impact of altered water temperature on the DFO, thereby providing insights for future reservoir operations regarding river damming and climate change and establishing fish conservation measures.
ISSN:2079-7737
2079-7737
DOI:10.3390/biology11121829