Spatiotemporal Characteristics of Radio Frequency Dielectric Barrier Glow Discharge at Atmospheric Pressure
In this paper, argon was used in radio frequency (13.56 MHz) dielectric barrier discharge (rf-DBD) at atmospheric pressure. The IV curve was recorded after gas breakdown, and discharge photos were captured by ICCD camera. Discharges of α mode and γ mode were observed based on IV curve and ICCD photo...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2021-09, Vol.11 (18), p.8430 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, argon was used in radio frequency (13.56 MHz) dielectric barrier discharge (rf-DBD) at atmospheric pressure. The IV curve was recorded after gas breakdown, and discharge photos were captured by ICCD camera. Discharges of α mode and γ mode were observed based on IV curve and ICCD photos. As the existence of negative glow in γ mode, the luminescence intensity of different position of the discharge gap was analyzed. It was found that in the α mode, the electron avalanche occurs from negative to positive and negative glow appeared after the discharge changed into γ mode. In every half cycle, the peak position of negative glow is 13 ± 1 ns later than that of electron avalanche on cathode surface. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app11188430 |