Lichen-Derived Diffractaic Acid Inhibited Dengue Virus Replication in a Cell-Based System
Dengue is a mosquito-borne flavivirus that causes 21,000 deaths annually. Depsides and depsidones of lichens have previously been reported to be antimicrobials. In this study, our objective was to identify lichen-derived depsides and depsidones as dengue virus inhibitors. The 18 depsides and depsido...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2023-01, Vol.28 (3), p.974 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dengue is a mosquito-borne flavivirus that causes 21,000 deaths annually. Depsides and depsidones of lichens have previously been reported to be antimicrobials. In this study, our objective was to identify lichen-derived depsides and depsidones as dengue virus inhibitors. The 18 depsides and depsidones of
,
,
, and
were tested against dengue virus serotype 2. Two depsides and one depsidone inhibited dengue virus serotype 2 without any apparent cytotoxicity. Diffractaic acid, barbatic acid, and Parmosidone C were three active compounds further characterized for their efficacies (EC
), cytotoxicities (CC
), and selectivity index (SI; CC
/EC
). Their EC
(SI) values were 2.43 ± 0.19 (20.59), 0.91 ± 0.15 (13.33), and 17.42 ± 3.21 (8.95) μM, respectively. Diffractaic acid showed the highest selectivity index, and similar efficacies were also found in dengue serotypes 1-4, Zika, and chikungunya viruses. Cell-based studies revealed that the target was mainly in the late stage with replication and the formation of infectious particles. This report highlights that a lichen-derived diffractaic acid could become a mosquito-borne antiviral lead as its selectivity indices ranged from 8.07 to 20.59 with a proposed target at viral replication. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28030974 |