Numerical study and stability of the Lengyel–Epstein chemical model with diffusion

In this paper, a nonlinear mathematical model with diffusion is taken into account to review the dynamics of Lengyel–Epstein chemical reaction model to describe the oscillating chemical reactions. For this purpose, the dimensionless Lengyel–Epstein model with diffusion and homogeneous boundary condi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2020-08, Vol.2020 (1), p.1-24, Article 427
Hauptverfasser: Zafar, Zain Ul Abadin, Shah, Zahir, Ali, Nigar, Kumam, Poom, Alzahrani, Ebraheem O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a nonlinear mathematical model with diffusion is taken into account to review the dynamics of Lengyel–Epstein chemical reaction model to describe the oscillating chemical reactions. For this purpose, the dimensionless Lengyel–Epstein model with diffusion and homogeneous boundary condition is considered. The steady states with and without diffusion of the Lengyel–Epstein model are studied. The basic reproductive number is computed and the global steady states for the system are calculated. Numerical results are offered for two systems using three well known techniques to validate the main outcomes. The consequences established from this qualitative study are supported by numerical simulations characterized by distinct programs, adopting forward Euler method, Crank–Nicolson method, and nonstandard finite difference method.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-020-02877-6