Method of Automated Detection of Traffic Violation with a Convolutional Neural Network

This article describes the relevance of developing methods and systems for detection photo-video violations of the Rules of the road. The proposed method includes several steps: 1) detecting of the three classes of objects on a video sequence (pedestrian crossing, a motor vehicle and a human on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EPJ Web of conferences 2019, Vol.224, p.4004
Hauptverfasser: Ibadov, S.R., Kalmykov, B.Y., Ibadov, R.R., Sizyakin, R.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article describes the relevance of developing methods and systems for detection photo-video violations of the Rules of the road. The proposed method includes several steps: 1) detecting of the three classes of objects on a video sequence (pedestrian crossing, a motor vehicle and a human on the pedestrian crossing; 2) tracking the trajectories of the vehicle and the human on the pedestrian crossing; 3) comparing the paths of the pedestrian and the vehicle and determining whether there has been a violation of the Rules of the road for a certain period of time. For real-time object detection, we used neural network YOLO V3.
ISSN:2100-014X
2101-6275
2100-014X
DOI:10.1051/epjconf/201922404004