Method of Automated Detection of Traffic Violation with a Convolutional Neural Network
This article describes the relevance of developing methods and systems for detection photo-video violations of the Rules of the road. The proposed method includes several steps: 1) detecting of the three classes of objects on a video sequence (pedestrian crossing, a motor vehicle and a human on the...
Gespeichert in:
Veröffentlicht in: | EPJ Web of conferences 2019, Vol.224, p.4004 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article describes the relevance of developing methods and systems for detection photo-video violations of the Rules of the road. The proposed method includes several steps: 1) detecting of the three classes of objects on a video sequence (pedestrian crossing, a motor vehicle and a human on the pedestrian crossing; 2) tracking the trajectories of the vehicle and the human on the pedestrian crossing; 3) comparing the paths of the pedestrian and the vehicle and determining whether there has been a violation of the Rules of the road for a certain period of time. For real-time object detection, we used neural network YOLO V3. |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/201922404004 |