Smart Inverters for Microgrid Applications: A Review
In a microgrid, with several distributed generators (DGs), energy storage units and loads, one of the most important considerations is the control of power converters. These converters implement interfaces between the DGs and the microgrid bus. In order to achieve higher functionality, efficiency an...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2019-03, Vol.12 (5), p.840 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a microgrid, with several distributed generators (DGs), energy storage units and loads, one of the most important considerations is the control of power converters. These converters implement interfaces between the DGs and the microgrid bus. In order to achieve higher functionality, efficiency and reliability, in addition to improving the control algorithms it is beneficial to equip the inverters with “smart” features. One interpretation of “smartness” refers to minimizing the requirement of communication and therefore switching from centralized to decentralized control. At the same time, being equipped with efficient and state of the art communication protocols also indicates “smartness” since the requirement of communication cannot be completely omitted. A “smart inverter” should offer some features such as plug and play, self-awareness, adaptability, autonomy and cooperativeness. These features are introduced and comprehensively explained in this article. One contribution discussed here is the possibility of achieving long-range wireless communication between inverters to empower various control schemes. Although current efforts aim to modify and improve power converters in a way that they can operate communication free, if a suitable and functional communication protocol is available, it will improve the accuracy, speed and robustness of them. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en12050840 |