Fabrication of a Novel Culture Dish Adapter with a Small Recess Structure for Flow Control in a Closed Environment
Cell culture medium replacement is necessary to replenish nutrients and remove waste products, and perfusion and batch media exchange methods are available. The former can establish an environment similar to that in vivo, and microfluidic devices are frequently used. However, these methods are hampe...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2019-01, Vol.9 (2), p.269 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cell culture medium replacement is necessary to replenish nutrients and remove waste products, and perfusion and batch media exchange methods are available. The former can establish an environment similar to that in vivo, and microfluidic devices are frequently used. However, these methods are hampered by incompatibility with commercially available circular culture dishes and the difficulty in controlling liquid flow. Here, we fabricated a culture dish adapter using polydimethylsiloxane that has a small recess structure for flow control compatible with commercially available culture dishes. We designed U-shaped and I-shaped recess structure adapters and we examined the effects of groove structure on medium flow using simulation. We found that the U-shaped and I-shaped structures allowed a uniform and uneven flow of medium, respectively. We then applied these adaptors to 293T cell culture and examined the effects of recess structures on cell proliferation. As expected, cell proliferation was similar in each area of a dish in the U-shaped structure adapter, whereas in the early flow area in the I-shaped structure adapter, it was significantly higher. In summary, we succeeded in controlling liquid flow in culture dishes with the fabricated adapter, as well as in applying the modulation of culture medium flow to control cell culture. |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app9020269 |