Chemogenomic analysis reveals key role for lysine acetylation in regulating Arc stability

The role of Arc in synaptic plasticity and memory consolidation has been investigated for many years with recent evidence that defects in the expression or activity of this immediate-early gene may also contribute to the pathophysiology of brain disorders including schizophrenia and fragile X syndro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2017-11, Vol.8 (1), p.1659-17, Article 1659
Hauptverfasser: Lalonde, Jasmin, Reis, Surya A., Sivakumaran, Sudhir, Holland, Carl S., Wesseling, Hendrik, Sauld, John F., Alural, Begum, Zhao, Wen-Ning, Steen, Judith A., Haggarty, Stephen J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The role of Arc in synaptic plasticity and memory consolidation has been investigated for many years with recent evidence that defects in the expression or activity of this immediate-early gene may also contribute to the pathophysiology of brain disorders including schizophrenia and fragile X syndrome. These results bring forward the concept that reversing Arc abnormalities could provide an avenue to improve cognitive or neurological impairments in different disease contexts, but how to achieve this therapeutic objective has remained elusive. Here, we present results from a chemogenomic screen that probed a mechanistically diverse library of small molecules for modulators of BDNF-induced Arc expression in primary cortical neurons. This effort identified compounds with a range of influences on Arc, including promoting its acetylation—a previously uncharacterized post-translational modification of this protein. Together, our data provide insights into the control of Arc that could be targeted to harness neuroplasticity for clinical applications. The activity-regulated cytoskeleton-associated protein (Arc) has been implicated in synaptic plasticity and memory consolidation. Here the authors show that Arc acetylation regulates its stability and identify small molecules that modulate Arc expression.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-017-01750-7