A novel nanobody-heavy chain antibody against Angiopoietin-like protein 3 reduces plasma lipids and relieves nonalcoholic fatty liver disease
Nonalcoholic fatty liver disease (NAFLD) is a metabolic disease mainly on account of hypercholesterolemia and may progress to cirrhosis and hepatocellular carcinoma. The discovery of effective therapy for NAFLD is an essential unmet need. Angiopoietin-like protein 3 (ANGPTL3), a critical lipid metab...
Gespeichert in:
Veröffentlicht in: | Journal of nanobiotechnology 2022-05, Vol.20 (1), p.237-237, Article 237 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nonalcoholic fatty liver disease (NAFLD) is a metabolic disease mainly on account of hypercholesterolemia and may progress to cirrhosis and hepatocellular carcinoma. The discovery of effective therapy for NAFLD is an essential unmet need. Angiopoietin-like protein 3 (ANGPTL3), a critical lipid metabolism regulator, resulted in increased blood lipids and was elevated in NAFLD. Here, we developed a nanobody-heavy chain antibody (VHH-Fc) to inhibit ANGPTL3 for NAFLD treatment.
In this study, we retrieved an anti-ANGPTL3 VHH and Fc fusion protein, C44-Fc, which exhibited high affinities to ANGPTL3 proteins and rescued ANGPLT3-mediated inhibition of lipoprotein lipase (LPL) activity. The C44-Fc bound a distinctive epitope within ANGPTL3 when compared with the approved evinacumab, and showed higher expression yield. Meanwhile, C44-Fc had significant reduction of the triglyceride (~ 44.2%), total cholesterol (~ 36.6%) and LDL-cholesterol (~ 54.4%) in hypercholesterolemic mice and ameliorated hepatic lipid accumulation and liver injury in NAFLD mice model.
We discovered a VHH-Fc fusion protein with high affinity to ANGPTL3, strong stability and also alleviated the progression of NAFLD, which might offer a promising therapy for NAFLD. |
---|---|
ISSN: | 1477-3155 1477-3155 |
DOI: | 10.1186/s12951-022-01456-z |