A Higher-Order Numerical Scheme for Two-Dimensional Nonlinear Fractional Volterra Integral Equations with Uniform Accuracy

In this paper, based on the modified block-by-block method, we propose a higher-order numerical scheme for two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy. This approach involves discretizing the domain into a large number of subdomains and using biquadratic La...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractal and fractional 2022-06, Vol.6 (6), p.314
Hauptverfasser: Wang, Zi-Qiang, Liu, Qin, Cao, Jun-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, based on the modified block-by-block method, we propose a higher-order numerical scheme for two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy. This approach involves discretizing the domain into a large number of subdomains and using biquadratic Lagrangian interpolation on each subdomain. The convergence of the high-order numerical scheme is rigorously established. We prove that the numerical solution converges to the exact solution with the optimal convergence order O(hx4−α+hy4−β) for 0
ISSN:2504-3110
2504-3110
DOI:10.3390/fractalfract6060314