A Higher-Order Numerical Scheme for Two-Dimensional Nonlinear Fractional Volterra Integral Equations with Uniform Accuracy
In this paper, based on the modified block-by-block method, we propose a higher-order numerical scheme for two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy. This approach involves discretizing the domain into a large number of subdomains and using biquadratic La...
Gespeichert in:
Veröffentlicht in: | Fractal and fractional 2022-06, Vol.6 (6), p.314 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, based on the modified block-by-block method, we propose a higher-order numerical scheme for two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy. This approach involves discretizing the domain into a large number of subdomains and using biquadratic Lagrangian interpolation on each subdomain. The convergence of the high-order numerical scheme is rigorously established. We prove that the numerical solution converges to the exact solution with the optimal convergence order O(hx4−α+hy4−β) for 0 |
---|---|
ISSN: | 2504-3110 2504-3110 |
DOI: | 10.3390/fractalfract6060314 |