Modelling the Periodic Response of Micro-Electromechanical Systems through Deep Learning-Based Approaches

We propose a deep learning-based reduced order modelling approach for micro- electromechanical systems. The method allows treating parametrised, fully coupled electromechanical problems in a non-intrusive way and provides solutions across the whole device domain almost in real time, making it suitab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Actuators 2023-07, Vol.12 (7), p.278
Hauptverfasser: Gobat, Giorgio, Baronchelli, Alessia, Fresca, Stefania, Frangi, Attilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a deep learning-based reduced order modelling approach for micro- electromechanical systems. The method allows treating parametrised, fully coupled electromechanical problems in a non-intrusive way and provides solutions across the whole device domain almost in real time, making it suitable for design optimisation and control purposes. The proposed technique specifically addresses the steady-state response, thus strongly reducing the computational burden associated with the neural network training stage and generating deep learning models with fewer parameters than similar architectures considering generic time-dependent problems. The approach is validated on a disk resonating gyroscope exhibiting auto-parametric resonance.
ISSN:2076-0825
2076-0825
DOI:10.3390/act12070278