A Case Study on EEG Signal Correlation Towards Potential Epileptic Foci Triangulation
The precise localization of epileptic foci with the help of EEG or iEEG signals is still a clinical challenge with current methodology, especially if the foci are not close to individual electrodes. On the research side, dipole reconstruction for focus localization is a topic of recent and current d...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2024-12, Vol.24 (24), p.8116 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The precise localization of epileptic foci with the help of EEG or iEEG signals is still a clinical challenge with current methodology, especially if the foci are not close to individual electrodes. On the research side, dipole reconstruction for focus localization is a topic of recent and current developments. Relatively low numbers of recording electrodes cause ill-posed and ill-conditioned problems in the inversion of lead-field matrices to calculate the focus location. Estimations instead of tissue conductivity measurements further deteriorate the precision of location tasks. In addition, time-resolved phase shifts are used to describe connectivity. We hypothesize that correlations over runtime approaches might be feasible to predict seizure foci with adequate precision. In a case study on EEG correlation in a healthy subject, we found repetitive periods of alternating high correlation in the short (20 ms) and long (300 ms) range. During these periods, a numerical determination of proportions of predominant latency and, newly established here, directionality is possible, which supports the identification of loops that, according to current opinion, manifest themselves in epileptic seizures. In the future, this latency and directionality analysis could support focus localization via dipole reconstruction using new triangulation calculations. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s24248116 |