On Minimum Algebraic Connectivity of Tricyclic Graphs
Consider a simple, undirected graph $ G=(V,E)$, where $A$ represents the adjacency matrix and $Q$ represents the Laplacian matrix of $G$. The second smallest eigenvalue of Laplacian matrix of $G$ is called the algebraic connectivity of $G$. In this article, we present a Python program for...
Gespeichert in:
Veröffentlicht in: | Mathematics interdisciplinary research (Online) 2024-06, Vol.9 (2), p.185-197 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider a simple, undirected graph $ G=(V,E)$, where $A$ represents the adjacency matrix and $Q$ represents the Laplacian matrix of $G$. The second smallest eigenvalue of Laplacian matrix of $G$ is called the algebraic connectivity of $G$. In this article, we present a Python program for studying the Laplacian eigenvalues of a graph. Then, we determine the unique graph of minimum algebraic connectivity in the set of all tricyclic graphs. |
---|---|
ISSN: | 2476-4965 |
DOI: | 10.22052/mir.2024.253568.1437 |