On Minimum Algebraic Connectivity of Tricyclic Graphs

‎Consider a simple‎, ‎undirected graph $ G=(V,E)$‎, ‎where $A$ represents the adjacency matrix and $Q$ represents the Laplacian matrix of $G$‎. ‎The second smallest eigenvalue of Laplacian matrix of $G$ is called the algebraic connectivity of $G$‎. ‎In this article‎, ‎we present a Python program for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics interdisciplinary research (Online) 2024-06, Vol.9 (2), p.185-197
Hauptverfasser: Hassan Taheri, Gholam Hossein Fath-Tabar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:‎Consider a simple‎, ‎undirected graph $ G=(V,E)$‎, ‎where $A$ represents the adjacency matrix and $Q$ represents the Laplacian matrix of $G$‎. ‎The second smallest eigenvalue of Laplacian matrix of $G$ is called the algebraic connectivity of $G$‎. ‎In this article‎, ‎we present a Python program for studying the Laplacian eigenvalues of a graph‎. ‎Then‎, ‎we determine the unique graph of minimum algebraic connectivity in the set of all tricyclic graphs‎.
ISSN:2476-4965
DOI:10.22052/mir.2024.253568.1437