UFD-2 is an adaptor-assisted E3 ligase targeting unfolded proteins

Muscle development requires the coordinated activities of specific protein folding and degradation factors. UFD-2, a U-box ubiquitin ligase, has been reported to play a central role in this orchestra regulating the myosin chaperone UNC-45. Here, we apply an integrative in vitro and in vivo approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2018-02, Vol.9 (1), p.484-15, Article 484
Hauptverfasser: Hellerschmied, Doris, Roessler, Max, Lehner, Anita, Gazda, Linn, Stejskal, Karel, Imre, Richard, Mechtler, Karl, Dammermann, Alexander, Clausen, Tim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Muscle development requires the coordinated activities of specific protein folding and degradation factors. UFD-2, a U-box ubiquitin ligase, has been reported to play a central role in this orchestra regulating the myosin chaperone UNC-45. Here, we apply an integrative in vitro and in vivo approach to delineate the substrate-targeting mechanism of UFD-2 and elucidate its distinct mechanistic features as an E3/E4 enzyme. Using Caenorhabditis elegans as model system, we demonstrate that UFD-2 is not regulating the protein levels of UNC-45 in muscle cells, but rather shows the characteristic properties of a bona fide E3 ligase involved in protein quality control. Our data demonstrate that UFD-2 preferentially targets unfolded protein segments. Moreover, the UNC-45 chaperone can serve as an adaptor protein of UFD-2 to poly-ubiquitinate unfolded myosin, pointing to a possible role of the UFD-2/UNC-45 pair in maintaining proteostasis in muscle cells. The U-box ubiquitin ligase UFD-2 is one of the most abundant components of the ubiquitin proteasome system in muscle cells. Here the authors perform in vitro and in vivo experiments and show that UFD-2 has E3 ligase activity and that it ubiquitinates unfolded myosin using the C. elegans myosin chaperone UNC-45 as an adaptor protein.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-018-02924-7