Penerapan Model Geographically Weighted Logistic Regression dengan Fungsi Pembobot Adaptive Gaussian Kernel pada Data Kemiskinan

Regression analysis is one statistical method used to determine the relationship between a dependent variable and one or more independent variables. Dependent variables that are categorical are analyzed using logistic regression analysis. Geographically Weighted Logistic Regression (GWLR) is a metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Jambura journal of mathematics 2024-08, Vol.6 (2), p.204-211
Hauptverfasser: Nurhasanah, Nunung, Widiarti, Widiarti, Nurvazly, Dina Eka, Usman, Mustofa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Regression analysis is one statistical method used to determine the relationship between a dependent variable and one or more independent variables. Dependent variables that are categorical are analyzed using logistic regression analysis. Geographically Weighted Logistic Regression (GWLR) is a method that is a local version of logistic regression, where location factors are considered. This method assumes that the dependent variable data are distributed binomially. In this study, the GWLR method is used to determine the factors influencing the poverty percentage in West Java Province in 2022 using an adaptive Gaussian kernel weighting function. The variables used are per capita expenditure, average length of schooling, Gross Regional Domestic Product (GRDP) per capita, and population density. The results of this study indicate that the variables of per capita expenditure, Gross Regional Domestic Product (GRDP) per capita, and population density significantly influence the poverty percentage in West Java Province in 2022.
ISSN:2654-5616
2656-1344
DOI:10.37905/jjom.v6i2.26504