Energy of Nonsingular Graphs: Improving Lower Bounds

Let G be a simple graph of order n and A be its adjacency matrix. Let λ1≥λ2≥…≥λn be eigenvalues of matrix A. Then, the energy of a graph G is defined as εG=∑i=1nλi. In this paper, we will discuss the new lower bounds for the energy of nonsingular graphs in terms of degree sequence, 2-sequence, the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics (Hidawi) 2021, Vol.2021, p.1-5
Hauptverfasser: Shooshtari, Hajar, Rodriguez, Jonnathan, Jahanbani, Akbar, Shokri, Abbas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a simple graph of order n and A be its adjacency matrix. Let λ1≥λ2≥…≥λn be eigenvalues of matrix A. Then, the energy of a graph G is defined as εG=∑i=1nλi. In this paper, we will discuss the new lower bounds for the energy of nonsingular graphs in terms of degree sequence, 2-sequence, the first Zagreb index, and chromatic number. Moreover, we improve some previous well-known bounds for connected nonsingular graphs.
ISSN:2314-4629
2314-4785
DOI:10.1155/2021/4064508