Candida albicans evades NK cell elimination via binding of Agglutinin-Like Sequence proteins to the checkpoint receptor TIGIT

Candida albicans is the most common fungal pathogen and a prevalent cause of deadly bloodstream infections. Better understanding of the immune response against it, and the ways by which it evades immunity, are crucial for developing new therapeutics against it. Natural Killer (NK) cells are innate l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2022-05, Vol.13 (1), p.2463-2463, Article 2463
Hauptverfasser: Charpak-Amikam, Yoav, Lapidus, Tom, Isaacson, Batya, Duev-Cohen, Alexandra, Levinson, Tal, Elbaz, Adi, Levi-Schaffer, Francesca, Osherov, Nir, Bachrach, Gilad, Hoyer, Lois L., Korem, Maya, Ben-Ami, Ronen, Mandelboim, Ofer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Candida albicans is the most common fungal pathogen and a prevalent cause of deadly bloodstream infections. Better understanding of the immune response against it, and the ways by which it evades immunity, are crucial for developing new therapeutics against it. Natural Killer (NK) cells are innate lymphocytes best known for their role against viruses and tumors. In recent years it became clear that NK cells also play an important role in anti-fungal immunity. Here we show that while NK cells recognize and eliminate C. albicans , the fungal cells inhibit NK cells by manipulating the immune checkpoint receptor TIGIT (T cell immunoreceptor with Ig and ITIM domains) in both humans and mice. We identify the responsible fungal ligands as members of the Als (Agglutinin-Like Sequences) protein family. Furthermore, we show that blocking this interaction using immunotherapy with a TIGIT-blocking antibody can re-establish anti- Candida immunity and serve as a potential therapeutic tool. Natural killer cells have emerged as critical immune cells in the response to fungal infection. Here the authors identify how Candida albicans evades the natural killer cell response via expression of ligands that directly modify the natural killer cell response and can be therapeutically targeted to restore the anti-Candida immunity.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-30087-z