Using Difference-in-Differences to Identify Causal Effects of COVID-19 Policies

Policymakers have implemented a wide range of non-pharmaceutical interventions to fight the spread of COVID-19. Variation in policies across jurisdictions and over time strongly suggests a difference-in-differences (DD) research design to estimate causal effects of counter-COVID measures. We discuss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Survey research methods 2020-01, Vol.14 (2), p.153-158
Hauptverfasser: Goodman-Bacon, Andrew, Marcus, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Policymakers have implemented a wide range of non-pharmaceutical interventions to fight the spread of COVID-19. Variation in policies across jurisdictions and over time strongly suggests a difference-in-differences (DD) research design to estimate causal effects of counter-COVID measures. We discuss threats to the validity of these DD designs and make recommendations about how researchers can avoid bias, interpret results accurately, and provide sound guidance to policymakers seeking to protect public health and facilitate an eventual economic recovery.
ISSN:1864-3361
1864-3361
DOI:10.18148/srm/2020.v14i2.7723