The inhibitory role of si-UBB delivered by degradable dendrimers-based lipid nanoparticles in ovarian cancer

Objective RNA interference holds tremendous potential in the treatment of malignant tumors. However, efficient and biocompatible delivery methods are needed for systemic delivery of small interfering RNA (siRNA). In this study, we explored the delivery efficiency and therapy effect of si-UBB-5A2SC8...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer nanotechnology 2022-12, Vol.13 (1), p.1-14, Article 5
Hauptverfasser: Shu, Shanrong, Liu, Xiaoping, Xu, Ming, Lin, Yaduan, Li, Ruiman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objective RNA interference holds tremendous potential in the treatment of malignant tumors. However, efficient and biocompatible delivery methods are needed for systemic delivery of small interfering RNA (siRNA). In this study, we explored the delivery efficiency and therapy effect of si-UBB-5A2SC8 in ovarian cancer. Methods and materials Si-UBB-5A2SC8 nanoparticles were successfully prepared according to the established procedure and the characteristic of nanoparticles was determined by digital laser scanning. Flow cytometry and confocal analysis demonstrated si-UBB was efficiently transfected to cell by the delivery of 5A2SC8 complexes. The in vitro gene knockdown efficiency of ubiquitin B was demonstrated by RT-qPCR and Western blot analysis, which was further verified by the inhibition of proliferation and migration of ovarian cancer cells. Accumulative efficiency of si-UBB-5A2SC8 nanoparticles was investigated in BALB/c mice bearing SKOV3-GFP tumor xenograft. In vivo imaging was adopted to test the accurate location of the nanoparticle in the tumor. The feature of the tumor and pivotal organ was determined. TUNEL and caspase-3 expression was used to analyze the underling mechanism of the inhibition effect. Results The average size and the zeta potential of the si-UBB-5A2SC8 was (150 ± 11) nm and − (20 ± 4) mV, respectively. Transmission electronic microscopy showed the nanoparticle was near-spherical with the mean size of (100 ± 15) nm. Flow cytometry and confocal microscopic images demonstrated 5A2SC8 complex could successfully deliver Cy5.5-siRNA to the cytoplasm of ovarian cancer cells. qRT-PCR and western blot demonstrated the mRNA and protein expression of ubiquitin B was decreased to 62.5% and 36.5% of the control group, which was accompanied with the decreased proliferation and migration ability in si-UBB-5A2SC8-transfected cells. Ex vivo fluorescence imaging demonstrated 5A2SC8 complex could successfully carry siRNA to the tumor lesion and exert the inhibition effect, which was verified by the decreased tumor weight and increased apoptosis and caspase-3 expression in mice treated with si-UBB-5A2SC8. Conclusions 5A2SC8 complex was a safe and efficient gene delivery vehicle and ubiquitin B was a potential target for the ovarian cancer targeted therapy.
ISSN:1868-6958
1868-6966
DOI:10.1186/s12645-022-00112-3