Identification of salmoniformes aquaculture conditions to increase creatine and anserine levels using multiomics dataset and nonnumerical information

Aquaculture is attracting attention as a sustainable protein source. Salmoniformes, which are generally called salmon, are consumed in large quantities worldwide and are popularly used for aquaculture. In this study, the relationship between muscle metabolites, intestinal microbiota, and nonnumerica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in microbiology 2022-10, Vol.13, p.991819-991819
Hauptverfasser: Shima, Hideaki, Murata, Izumi, Feifei, Wei, Sakata, Kenji, Yokoyama, Daiki, Kikuchi, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aquaculture is attracting attention as a sustainable protein source. Salmoniformes, which are generally called salmon, are consumed in large quantities worldwide and are popularly used for aquaculture. In this study, the relationship between muscle metabolites, intestinal microbiota, and nonnumerical information about the ecology of salmoniformes was investigated to improve the efficiency of aquaculture using nuclear magnetic resonance and next-generation sequencing with bioinformatics approach. It was revealed that salmoniformes are rich in anserine and creatine, which are useful for human health care, along with collagen and lipids. The important factors in increasing these useful substances and manage the environment of salmoniformes aquaculture should be noted.
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2022.991819