Radiative and chemical implications of the size and composition of aerosol particles in the existing or modified global stratosphere
The size of aerosol particles has fundamental effects on their chemistry and radiative effects. We explore those effects using aerosol size and composition data in the lowermost stratosphere along with calculations of light scattering. In the size range between about 0.1 and 1.0 µm diameter (accumul...
Gespeichert in:
Veröffentlicht in: | Atmospheric chemistry and physics 2021-06, Vol.21 (11), p.8915-8932 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The size of aerosol particles has fundamental effects on their chemistry and radiative effects. We explore those effects using aerosol size and
composition data in the lowermost stratosphere along with calculations of light scattering. In the size range between about 0.1 and
1.0 µm diameter (accumulation mode), there are at least two modes of particles in the lowermost stratosphere. The larger mode consists
mostly of particles produced in the stratosphere, and the smaller mode consists mostly of particles transported from the troposphere. The
stratospheric mode is similar in the Northern and Southern Hemisphere, whereas the tropospheric mode is much more abundant in the Northern
Hemisphere. The purity of sulfuric acid particles in the stratospheric mode shows that there is limited production of secondary organic aerosol in
the stratosphere, especially in the Southern Hemisphere. Out of eight sets of flights sampling the lowermost stratosphere (four seasons and two
hemispheres) there were three with large injections of specific materials: volcanic, biomass burning, or dust. The stratospheric and tropospheric
modes have very different roles for radiative effects on climate and for heterogeneous chemistry. Because the larger particles are more efficient at
scattering light, most of the radiative effect in the lowermost stratosphere is due to stratospheric particles. In contrast, the tropospheric
particles can have more surface area, at least in the Northern Hemisphere. The surface area of tropospheric particles could have significant
implications for heterogeneous chemistry because these particles, which are partially neutralized and contain organics, do not correspond to the
substances used for laboratory studies of stratospheric heterogeneous chemistry. We then extend the analysis of size-dependent properties to
particles injected into the stratosphere, either intentionally or from volcanoes. There is no single size that will simultaneously maximize the
climate impact relative to the injected mass, infrared heating, potential for heterogeneous chemistry, and undesired changes in direct sunlight. In
addition, light absorption in the far ultraviolet is identified as an issue requiring more study for both the existing and potentially modified
stratosphere. |
---|---|
ISSN: | 1680-7324 1680-7316 1680-7324 |
DOI: | 10.5194/acp-21-8915-2021 |