Engineered Human Intervertebral Disc Model Inducing Degenerative Microglial Proinflammation

Degeneration of the intervertebral disc (IVD) is a major contributor to low back pain (LBP). IVD degeneration is characterized by abnormal production of inflammatory cytokines secreted by IVD cells. Although the underlying molecular mechanisms of LBP have not been elucidated, increasing evidence sug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2022-10, Vol.23 (20), p.12216
Hauptverfasser: Hwang, Min-Ho, Kang, You Jung, Son, Hyeong-Guk, Cho, Hansang, Choi, Hyuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Degeneration of the intervertebral disc (IVD) is a major contributor to low back pain (LBP). IVD degeneration is characterized by abnormal production of inflammatory cytokines secreted by IVD cells. Although the underlying molecular mechanisms of LBP have not been elucidated, increasing evidence suggests that LBP is associated particularly with microglia in IVD tissues and the peridiscal space, aggravating the cascade of degenerative events. In this study, we implemented our microfluidic chemotaxis platform to investigate microglial inflammation in response to our reconstituted degenerative IVD models. The IVD models were constructed by stimulating human nucleus pulposus (NP) cells with interleukin-1β and producing interleukin-6 (129.93 folds), interleukin-8 (18.31 folds), C-C motif chemokine ligand-2 (CCL-2) (6.12 folds), and CCL-5 (5.68 folds). We measured microglial chemotaxis (p < 0.05) toward the conditioned media of the IVD models. In addition, we observed considerable activation of neurodegenerative and deactivation of protective microglia via upregulated expression of CD11b (p < 0.001) and down-regulation of CD206 protein (p < 0.001) by soluble factors from IVD models. This, in turn, enhances the inflammatory milieu in IVD tissues, causing matrix degradation and cellular damage. Our findings indicate that degenerative IVD may induce degenerative microglial proinflammation, leading to LBP development.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms232012216